Effects of Simulation-Based Education on Interprofessional Teamwork Skills in Cardiac Arrest Scenarios

NGR 6813: EVIDENCE-BASED NURSING PRACTICE

UNIVERSITY OF CENTRAL FLORIDA

MARY BAERTLEIN
Research Question:

Do interprofessional healthcare providers who participate in simulation-based resuscitation education demonstrate an increase in teamwork skills?
Significance and Background:

- Why IP education?
 - IOM (2000) - “To err is human: Building a safer health system”
 - $17 billion - estimated annual cost of medical errors
 - IP collaboration becomes healthcare priority
 - 2013 – IPE endorsed by NLN, Joint Commission, AHRQ

(Institute of Medicine, 2000; Institute of Medicine, 2003; Garbee et al., 2013a; Neumar et al., 2015)
Significance and Background:

Why focus on resuscitation scenarios?

- Breakdown of IP teamwork during cardiac arrest resuscitation:
 - Adverse effect on ROSC
 - Detrimental patient outcomes / safety practices
 - Negative impact on patient survival to discharge
- Degradation of resuscitation knowledge and skills within 6 months
- 2015 AHA - course curriculum updated - team concepts / simulation

(Brock et al., 2013; Figueroa et al., 2013; Neumar et al., 2015 Yang et al., 2012 Zhu & Zhang, 2016)
Significance and Background:

- Why use simulation-based education?
 - SBTT – identified as effective educational methodology
 - Crisis-Resource Management (CRM)
 - Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS)
 - Emergency Team Coordination Course (ETCC)
 - Challenge - prepare IP healthcare providers to effectively respond to high-risk clinical events

(Andel et al., 2012; Dillon, Noble, & Kaplan, 2009; Garbee et al., 2013a; Garbee et al., 2013b; Shapiro, 2004)
Methods

<table>
<thead>
<tr>
<th>Databases</th>
<th>Search Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>CINAHL</td>
<td>Interprofessional</td>
</tr>
<tr>
<td>MEDLINE</td>
<td>Teamwork</td>
</tr>
<tr>
<td>Cochrane Library</td>
<td>Simulation-based education</td>
</tr>
<tr>
<td>ERIC</td>
<td>Cardiac arrest</td>
</tr>
<tr>
<td>PsycINFO</td>
<td>Mock code</td>
</tr>
<tr>
<td>Academic Search Premier</td>
<td>Survival</td>
</tr>
<tr>
<td>Google Scholar</td>
<td></td>
</tr>
</tbody>
</table>
Methods

Inclusion Criteria:

- Focus on teamwork
- IP healthcare participants
- Cardiac arrest events
- In-hospital setting
- Simulation-based training
- Published in English

Exclusion Criteria:

- Computer-based simulation only
- Evaluation of participant confidence
Methods

- Search retrieved 170 articles: 8 articles retained + 2 hand search = 10 articles

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Level I</th>
<th>Level II</th>
<th>Level III</th>
<th>Quality A</th>
<th>Quality B</th>
<th>Quality C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized Control Crossover</td>
<td></td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quasi-experimental</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cohort Study</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Prospective – Blinded Assessors</td>
<td>(n = 342)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot Study</td>
<td>(n = 112)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descriptive Study</td>
<td>(n = 72)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Sample Size = 903

(202 Physicians; 297 RNs; 9 Nurse Anesth.; 51 RT; 8 PT; 36 non-category; 300 non-specified)

(Dearholt, Dang, Sigma Theta Tau International, & Institute for Johns Hopkins Nursing, 2012)
Findings: Teamwork

Summary - 9 out of 10 Studies Demonstrated Improvement in Teamwork Skills:

- Paired t-test: 8 Studies \((p < 0.001\) to \(p < 0.05\))
 - Participant mean Team Based Behavior (TBB) 4.74 to 5.62 \((p < 0.05)\)
 - Observer results (5 studies) - increased from 3.56 to 4.75 \((p < .05)\)

Retention: (1) none; (1) 2 weeks; (2) 3 months; (3) 6 months; (1) year

(Figueroa et al., 2013; Frengley et al., 2011; Garbee et al., 2013a; Garbee et al., 2013b; Gilfoyle et al., 2017; Mahramus et al., 2016; Shapiro et al., 2004; Wong, Gang, Szyld, & Mahoney, 2016)

- Cohen’s d / Pearson’s r test: 1 study - large effect size \((d = 0.84\) and \(r = 0.39)\)

Retention: None

(Sawyer et al., 2013)
Findings: Communication

Summary - 7 Studies Demonstrated Improvement in Communication Skills:

- Paired t-test: 6 Studies (p ≤ 0.004 to p < 0.05)
 - Participant mean increased from 2.5 to 3.8 (p < 0.05)

 Retention: (2) 3 Months; (1) 1 Year

 (Figueroa et al., 2013; Frengley et al., 2011; Garbee et al., 2013a; Garbee et al., 2013b; Gilfoyle et al., 2017; Wong, Gang, Szyld, & Mahoney, 2016)

- Cohen’s d / Pearson’s r test: 3.0 vs 4.4 (95% CI; p < 0.001)

 Retention: None

(Sawyer et al., 2013)
Findings: Situational Awareness

Summary - 3 Studies Demonstrated Improvement in Situational Awareness:

- Paired t-test: 3 studies (p < 0.001 to p < 0.05)
 - Mean observer scores increased 86.77 to 90.75
 - Mean percentage score increased from 0.55 to 0.75

Retention: (1) none; (2) 6 months

(Garbee et al., 2013a; Garbee et al., 2013b; Gilfoyle et al., 2017)
Gaps and Limitations:

- Lack of a standardized medical simulation evaluation tool
- Inability to blind study participants
- Variation related to retention timeframe measures
- Convenience sample – voluntary participation
- Attrition of study participants - retention
- Technical / ethical issues - video recording / debriefing in clinical setting
Recommendations:

Implications for Practice: Level II / Quality B

- Development of a quality improvement strategy
 - Implement standardized IP SBTT for in-hospital cardiac arrest scenarios
 - Mock Codes to occur at least every 3 - 6 months (less than 1 year)
 - Duration of practice - (1) hour including pre- and post-debrief
 - Improve patient outcomes (i.e. ROSC, morbidity and mortality, LOS, reduce readmission rates)
Recommendations:

Implications for Future Research: Level II / Quality B

- Develop a standardized / validated medical simulation evaluation tool
 - Teamwork / communication / situational awareness
- Standardize retention timeframe measures
- Larger studies needed to assess impact on quality measures
 - Does IP SBTT improve ROSC, LOS, readmission rates, costs?
- Pilot studies
 - Measure teamwork and performance outcomes of similar units
 - Consider using blinded assessors
Conclusion:

Evidence supports IP simulation-based resuscitation education:

- Simulation-based education is a valid methodology to improve skills
 - Teamwork
 - Communication
 - Situational awareness

- Ongoing IP healthcare provider resuscitation team education to improve retention of knowledge and skills

- Additional research
 - Need to develop a validated medical simulation evaluation tool
 - Larger studies needed to assess IP SBTT on patient quality measures and healthcare costs

References

References

Any Questions?